

/ BRAZETEC Silberhartlote, cadmiumfrei

Die Silberhartlote dieser Seite können ohne zusätzliche Angaben in der Regel für Betriebstemperaturen von –200°C bis zu +200°C eingesetzt werden. Alle Lote sind für beliebige Stähle, Kupfer- und Kupferlegierungen sowie Nickel und Nickellegierungen einsetzbar. Die zinnfreien Lote sind besonders für dynamische Betriebsbelastungen geeignet. Weitere Lote sind auf Anfrage erhältlich oder nach Kundenwunsch lieferbar.

Bezeichnung	Zusammensetzung in Gewicht-%				Schmelz- bereich nach DSC	Schmelz- bereich nach ISO 17672	Dichte	ISO 17672				Lieferform				
	Ag	Cu	Zn	Sonstige	in °C	in °C	in °C	in g/cm³		in MPa on S 235	(G:D)		(Pb	©€55		
BrazeTec 5662	56	19	17	5 Sn/3 Ga	605 – 630	-	630	9,3	-	150	•	•	-	-		
BrazeTec 5600	56	22	17	5 Sn	630 – 655	620 – 655	655	9,4	Ag 156	150	•	•	•	•		
BrazeTec 5507	55	21	22	2 Sn	650 – 670	630 – 660	670	9,3	Ag 155	150	•	•	•	•		
BrazeTec 4576	45	27	25.5	2.5 Sn	645 – 695	640 - 680	695	9,1	Ag 145	150	•	•	•	•		
BrazeTec 4076	40	30	28	2 Sn	665 – 725	650 – 710	725	9,0	Ag 140	150	•	•	•	•		
BrazeTec 3476	34	36	27.5	2.5 Sn	655 – 745	630 - 730	745	8,9	Ag 134	150	•	•	•	•		
BrazeTec 3076	30	36	32	2 Sn	675 – 760	665 – 755	760	8,8	Ag 130	150	•	•	-	•		
BrazeTec 2576	25	40	33	2 Sn	680 – 775	680 – 760	775	8,8	Ag 125	150	•	•	-	•		
BlueBraze 2410	24	43.7	20	0.3 Si	690 – 750	-	750	8,4	-	150	•	•	-	•		
BrazeTec 4404	44	30	26	-	675 – 735	675 – 735	735	9,1	Ag 244	150	•	•	•	•		
BrazeTec 3075	30	38	32	-	700 – 775	680 – 765	775	8,8	Ag 230	150	•	•	•	•		
BrazeTec 2500	25	40	35	-	715 – 790	700 – 790	790	8,7	Ag 225	150	•	•	-	•		
BrazeTec 2009	20	44	35.8	0.15 Si	730 – 810	-	810	8,6	Ag 220	150	•	•	-	•		

Alle Lote auch mit 0.15 % Si lieferbar

/ BRAZETEC CoMet Hartlotstäbe, borsäurefrei ummantelt & cadmiumfrei

Aus der umfangreichen Palette der cadmiumfreien Hartlote bietet BRAZETEC die aufgeführten Hartlote unter dem Namen BrazeTec CoMet (Coated Metal) auch als flussmittelummantelte Stäbe an. Diese sind natürlich frei von gesundheitsschädlichen Lösungsmitteln, Kunststoffen und Borsäure. Das Flussmittel entspricht dem Typ FH 10 nach DIN ISO 18496. Für die Anwendung gelten die entsprechenden Hinweise zu cadmiumfreien Hartloten. Bedingt durch die Flussmittelummantelung ist der Silbergehalt des ummantelten Lotstabs niedriger als der Silberanteil des reinen Lotstabs. Die Zusammensetzung der reinen Lotstäbe entspricht selbstverständlich den aufgeführten Zusammensetzungen bei cadmiumfreien Hartloten. Das Dickenverhältnis der Flussmittelbeschichtung zum Kerndraht des BrazeTec CoMet Lotstabs kann nach Kundenwunsch im Bereich von 1,3-2,4 standardmäßig angeboten werden. Auf Anfrage sind auch weitere Lote mit Flussmittelummantelung lieferbar.

Bezeichnung	Schmelzbereich nach DSC	Löttemperatur min.	Lieferform
	in °C	in °C	\mathbb{W}
BrazeTec CoMet 5600 U	630 – 655	655	•
BrazeTec CoMet 4576 U	645 – 695	695	•
BrazeTec CoMet 4404 U	675 – 735	735	•
BrazeTec CoMet 4076 U	665 – 725	725	•
BrazeTec CoMet 3476 U	655 – 745	745	•
BrazeTec CoMet 3076 U	675 – 760	760	•
BlueBraze CoMet 2410 U	690 – 750	750	•
BrazeTec CoMet 2009 U	730 – 810	810	•

Alle Lote auch mit 0,15 % Si lieferbar

/ BRAZETEC Lote zum Hartlöten von Hartmetallen

Die aufgeführten Lote sind zum Löten von Hartmetallen und schwer benetzbaren Stoffen wie z.B. Wolfram, Molybdän, Tantal

und Chrom geeignet. Die zu erreichende Festigkeit der Fügestelle hängt von der Festigkeit des Grundwerkstoffs ab.

Bezeichnung			samm in Gev				Schmelz- bereich nach DSC	Schmelz- bereich nach ISO 17672	Löt- temp. min	Scher- festigkeit ¹⁾ min.	Dichte	ISO 17672	Besonderheiten der Anwendung		Lieferfo		1
	Ag	Cu	Zn	Mn	Ni	Sonst.	in °C	in °C	in °C	in MPa	in g/cm³			(G1)		(P)	©€;;;
BrazeTec 6488	64	26	-	2	2	6 In	730 – 780	-	770	150	9,6	-	TiN-beschich- tungsfähig	•	•	•	•
BrazeTec 5081	50	20	28	-	2	-	670 - 730	660 – 715	700	230	9,2	Ag 450	-	•	•	•	•
BrazeTec 4900	49	16	23	7.5	4.5	-	680 - 705	680 – 705	690	250	8,9	Ag 449	-	•	•	•	•
BrazeTec 4900 A	49	27.5	20.5	2.5	0.5	-	670 – 720	-	710	240	8,9	-	-	•	•	•	•
BrazeTec 2700	27	38	20	9.5	5.5	-	690 - 850	680 – 850	800	250	8,7	Ag 427	-	•	•	•	•
BrazeTec 21/80	-	86	-	12	2	-	970 – 1.005	-	990	200	8,8	-	Zinkfreie Lote,	•	•	•	•
BrazeTec 21/68	-	87	-	10	-	3 Co	980 – 1.020	-	1.020	200	8,8	-	für Ofenlötungen geeignet	•	•	•	•

 $^{^{1)}}$ Gemessen gemäß BRAZETEC-Standard, Verbund 1.2210 & K10

/ BRAZETEC Schichtlote zum Hartlöten von Hartmetallen

Für das Löten von Hartmetallen hat BRAZETEC spezielle Schichtlotsysteme entwickelt, die die auf Grund unterschiedlicher thermischer Ausdehnungskoeffizienten entstehenden inneren Spannungen kompensieren können. Für anspruchsvolle Anwendungen, die besonders hohe Scherfestigkeiten erfordern, empfehlen wir das Schichtlot BrazeTec 49/Cu^{plus}. BrazeTec /NiN Produkte mit einer

Nickelnetz-Zwischenschicht ermöglichen einen stabilen Lotspalt mit erhöhter Festigkeit im Fügeverbund. Die zu erreichende Festigkeit der Fügestelle hängt allgemein von der Festigkeit des Grundwerkstoffs ab. Auf Anfrage sind anwendungsspezifische Schichtdickenverhätnisse im Schichtlot erhältlich.

Bezeichnung			ammei in Gew				Schmelz- bereich nach DSC	Schmelz - bereich nach ISO 17672	Löt- temp. min.	Scherfes- tigkeit ²⁾ min.	Dichte	Besonderheiten der Anwendung	Liefe	rform
	Ag	Cu	Zn	Mn	Ni	In	in °C	in °C	in °C	in MPa				©₹%
BrazeTec 49/Cu	49	27.5	20.5	2.5	0.5	-	670 – 720	-	710	150	9,0	Kupfer- Zwischenschicht	•	•
BrazeTec 49/Cu ^{plus}	49	27.5	20.5	2.5	0.5	-	670 – 720	-	710	180	9,0	Verstärkte Zwischenschicht	•	•
BrazeTec 49/NiN	49	27.5	20.5	2.5	0.5	-	670 – 720	-	710	150	9,0	Nickelnetz- Schichtlot	•	•
BrazeTec 49/CuNiFe	49	27.5	20.5	2.5	0.5	-	670 – 690	-	690	150	9,0	CuNiFe- Zwischenschicht	•	•
BrazeTec 64/Cu	64	26	-	2	2	6	730 – 780	-	770	150	9,6	TiN-beschichtungsfähig, Kupfer-Zwischenschicht	•	•
BrazeTec Cu/NiN	-	100	-	-	-	-	1.085	1.085	1.100	200	8,9	Nickelnetz-Schichtlot	•	•

Die Angaben zur Zusammensetzung von Schichtloten beziehen sich ausschließlich auf die Lotschicht.
² Gemessen gemäß BRAZETEC-Standard, Verbund 1.2210 & K10

/ BRAZETEC BlueBraze

Weniger Silber: bis minus 21 %!

Durch den deutlich reduzierten Silbergehalt unserer innovativen BrazeTec BlueBraze Hartlote erreichen Sie eine dauerhafte Kostenreduzierung bis zu 20°. Sie machen sich unabhängiger von den Schwankungen der Silberpreise am Edelmetallmarkt und gewinnen mehr Planungssicherheit bei der Kalkulation Ihrer Materialkosten.

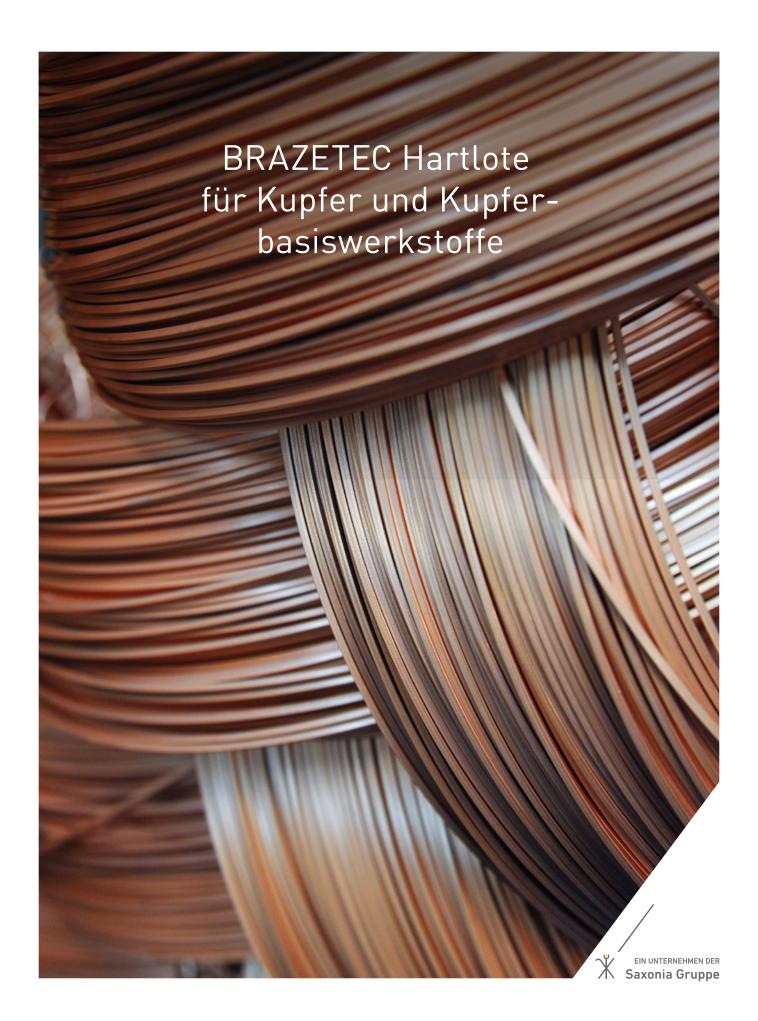
Vergleichbare Verarbeitungseigenschaften:

Konstruktion, Prozesse, Verarbeitung bleiben unverändert. Bei der Entwicklung von BrazeTec BlueBraze hatte, neben der Silberreduzierung, die Beibehaltung wichtiger Materialeigenschaften der Standardlote oberste Priorität. Die Funktionalität von BrazeTec BlueBraze hat sich in umfangreichen Tests und Versuchen bestätigt. Für Sie als Kunde bedeutet das, Konstruktionen oder Prozesse müssen nicht verändert werden. Die Verarbeitung geht wie gewohnt von statten.

Bezeichnung		Zu	samm in Ge	ensetz ew%	ung		Schmelz- bereich nach DSC ca.	Löttemp. ca.	Scherfestig- keit min. ¹⁾	ISO 17672	AWS 5.8
	Ag	Cu	Zn	Mn	Ni	In	in °C	in °C	in MPa		
BrazeTec BlueBraze 2810	28	39	20	10	1	2	680-760	710	250	-	-
BrazeTec BlueBraze 28/Cu	28	39	20	10	1	2	680-760	710	150	-	-
BrazeTec BlueBraze 28/Cu ^{plus}	28	39	20	10	1	2	680-760	710	180	-	-

 $^{^{*1}}$ Abhängig von Produkt, Menge und Silberkurs $^{-11}$ Gemessen gemäß BRAZETEC-Standard, Verbund 1.2210 & K10

/ BRAZETEC Silberhartlote für besondere Anwendungen


Die Lote BrazeTec 7200 und BrazeTec 6009 können sowohl an Luft mit Flussmittel als auch flussmittelfrei in Schutzgasöfen gelötet werden. BrazeTec 6009 wird zusammen mit dem Flussmittel BrazeTec spezial h zum Löten von nicht rostenden Stählen einge-

setzt. Bei Lötprozessen im Vakuum sollten für beide Lote Löttemperaturenvon 900 °C nicht überschritten werden, um ein Abdampfendes Silbers zu vermeiden. Die Löttemperatur im Ofen richtet sich nach den Grundwerkstoffen.

Bezeichnung		Zusamı in Ge	mense ewicht			Schmelz- bereich nach DSC	Schmelz - bereich nach ISO 17672	Löt- temp. min.	Dichte	ISO 17672	Besonderheiten der Anwendung	Lieferforr		rform	ı
Silberhartlote	Ag	Cu	Sn	Si	Zn	in °C	in °C	in °C	in g/cm³			(GI)		(Po	
BrazeTec 7200	72	28	-	-	-	780	780	780	10,0	Ag 272	Metallisierte Keramik	•	•	•	•
BrazeTec 7291	72	-	-	-	28	710 – 730	-	730	8,4	-	beliebige Stähle; geeignet für aggresive Medien	•	•	•	•
BrazeTec 6009	60	30	10	-	-	600 - 720	600 – 730	720	9,8	Ag 160	nichtrostende Stähle	•	•	•	•
BrazeTec 8500	85	15	-	-	-	-	960 – 970	960	9,4	Ag 485	beliebige Stähle; geeignet für aggresive Medien	•	•	•	•
Messinghartlote	Cu	Zn	Ni	Si	Mn	in °C	in °C	in °C	in g/cm³						
BrazeTec 60/40	60	39.55	-	0.3	0.15	870 – 900	870 – 900	900	8,4	Cu 670	Verzinkte Stahlrohre	•	•	•	•
BrazeTec 48/10	48	41.8	10	0.2	-	890 – 920	890 – 920	920	8,4	Cu 773	Stahlrohrrahmen	•	•	-	•

/ BRAZETEC Silfos® Hartlote für Kupfer und Kupferbasiswerkstoffe

Die Silfos-Lote können je nach Typ für Betriebstemperaturen zwischen –70°C und +150°C eingesetzt werden. Die phosphorhaltigen Lote sind speziell zum Verbinden von Kupfer mit Kupfer oder von Kupferlegierungen (Messing, Bronze, Rotguss) entwickelt worden. Beim Löten von Kupfer an Kupfer kann auf Grund des Phosphorgehalts auf ein zusätzliches Flussmittel verzichtet werden. Für schwefelhaltige Medien ist der Einsatz dieser Lote nicht zulässig. Für Stähle und für Nickellegierungen sind diese Lote auf Grund einer Sprödphasenbildung nicht geeignet. Die Lote BrazeTec Silfos® 2 und BrazeTec Silfos® 94 sind im Einklang der DVGW Empfehlungen und können in der Kupferrohrinstallation eingesetzt werden.

Bezeichnung		samme in Gew			Schmelz- bereich nach DSC	Schmelz- bereich nach ISO 17672	Löttemp. min.	Dichte	ISO 17672	Scherzug- festigkeit nach DIN EN 12797 min.		Liefe	rform	
	Ag	Cu	Р	Sn	in °C	in °C	in °C	in g/cm³		in MPa an Cu	(A.D)			
BrazeTec Silfos® 18	18	75	7	-	645	645	650	8,3	CuP 286	100	•	•	-	-
BrazeTec Silfos® 15	15	80	5	-	645 – 800	645 – 800	700	8,3	CuP 284	100	•	•	•	•
BrazeTec Silfos® 5	5	89	6	-	645 – 815	645 – 835	710	8,2	CuP 281a	100	•	•	•	•
BrazeTec Silfos® 2	2	91.7	6.3	-	645 – 845	645 – 825	740	8,1	CuP 279	100	•	•	•	•
BrazeTec Silfos® 94	-	93.8	6.2	-	710 – 860	710 – 890	760	8,1	CuP 179	100	•	•	-	•
BrazeTec Silfos® 93	-	93	7	-	710 – 820	710 – 820	730	8,1	CuP 180	100	•	•	-	•
BrazeTec Silfos® 92	-	92.2	7.8	-	710 – 780	710 – 770	720	8,0	CuP 182	100	•	•	-	_
BrazeTec Silfos® 86	-	86.2	6.8	7	640 – 720	650 – 700	700	8,0	CuP 386	100	•	-	-	-

/ BRAZETEC Aktivlote

Für BRAZETEC Aktivlote ist eine minimale Löttemperatur von 850 °C notwendig, um eine Verbindung mit der Keramik zu erreichen. Höhere Löttemperaturen können das Benetzungsverhaltenverbessern. Als Lötatmosphären werden reines Argon (4.8) oder Vakuum (<10 $^{-3}$ mbar) empfohlen.

Im Fall einer Vakuumlötung mit CB 4 sollte die Löttemperatur nicht wesentlich über 900 °C bzw. bei Verwendung von CB 2 und CB 6 nicht wesentlich über 1000 °C liegen, um ein Abdampfen von Silber zu vermeiden.

Bezeichnung	Zı	Zusammensetzung in Gewicht-%						bereich	Schmelz- Optimale bereich Löttemp. nach ISO 17672		Dichte	Besonderheiten der Anwendung		Liefe	rform	
	Ag	Cu	In	Ti	in °C	in °C	in °C	in g/cm³		(G)			©€\$\$			
BrazeTec CB 2	96	-	-	4	970	-	1.000	10,3	Keramik, Keramik/Metall-	•	•	•	•			
BrazeTec CB 4	70,5	26,5	-	3	780 – 820	-	850	9,9	Verbindungen, Grafit, Diamant, Saphir, Rubin	•	•	•	•			
BrazeTec CB 6	98,4	-	1	0,6	950 – 960	-	1.000	10,3	Siliziumnitrid	•	•	•	•			

/ BRAZETEC Aktivlotpasten

Die BRAZETEC Aktivlotpasten haben einen hohen Metallgehalt, der auf die Anwendung des Produktes optimiert ist.

Auf Anfrage sind Legierungen mit abweichendem Titan-Gehalt lieferbar.

Bezeichnung	Zusammensetzung in Gewicht-%				Schmelzbereich	Optimale Löttemperatur	Besonderheiten der Anwendung	Lieferform		
	Ag	Cu	In	Ti	in °C	in °C				
BrazeTec CB 10	64,8	25,2	-	10	780 – 805	850	Keramik, Keramik / Metall-Verbindungen,	•	•	
BrazeTec CB 11	90	-	-	10	970	1.000	Grafit, Diamant, Saphir, Rubin	•	•	
BrazeTec CB 12	55,1	39,9	-	5	780 – 855	>900	Keramik/Metall-Verbindungen,	•	•	
BrazeTec CB 17	59,1	27,2	12,5	1,2	605 – 720	780 – 800	PKD-, CBN Anwendung	•	•	

